Abstract

The piston bowl design is one of the most important factors that affect the air-fuel mixing and the subsequent combustion and pollutant formation processes in a direct-injection diesel engine. The bowl geometry and dimensions, such as the pip region, bowl lip area, and toroidal radius, are all known to have an effect on the in-cylinder mixing and combustion process. In order to understand better the effect of re-entrant geometry, three piston bowls with different toroidal radii and lip shapes were investigated using computational fluid dynamics engine modelling. KIVA3V with improved submodels was used to model the in-cylinder flows and combustion process, and it was validated on a high-speed direct-injection engine with a second-generation common-rail fuel injection system. The engine's performance, in-cylinder flow, and combustion, and emission characteristics were analysed at maximum power and maximum torque conditions and at part-load operating conditions. Three injector protrusions and injection timings were investigated at full-load and part-load conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call