Abstract

A backward facing micro-step is a building block for many microfluidic devices. Due to micron sized characteristic dimensions, the gas flow in such a geometry is rarefied in nature. Such rarefied gas flows are widely solved using the Direct Simulation Monte Carlo (DSMC) technique. Flow separation, circulation and re-attachment are some of the basic characteristics of step flows. The objective of this study is to analyze the effect of rarefaction on the flow properties and the separation of the flow. The range of selected Knudsen number (Kn) covers the slip and transition regime from a value of 0.0311–13.25. The pressure ratios employed are 3 and 5. It is observed that the slip velocity continuously increases while the centre-line velocity first decreases, then remains constant and finally increases with increase in Kn. At the step, separation of the flow is seen for Kn < 0.1325 while no such separation is observed in the range of Kn from 0.198 to 13.25. The corresponding Re for these ranges are 6.43 to 0.67 and 0.392 to 0.012 respectively. The re-attachment length decreases with increase in Kn whereas it increases with increase in Re. A stronger pressure force and a weaker diffusion effect leads to flow separation in the slip regime whereas stronger diffusion and weaker pressure force lead to an absence of flow separation in the transition regime. Finally, this work presents for the first time the existence of the Knudsen minimum for such a backward step geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.