Abstract
Although pharmacological agonists of protein kinase C (PKC) stimulate some events of mammalian egg activation, including cortical granule (CG) exocytosis, it is not known if these events are dependent on PKC activation during the normal process of fertilization. In order to examine the potential role of PKC in CG exocytosis, this study investigated whether PKC agonists faithfully mimic CG release and whether PKC antagonists block fertilization-induced CG release in mature mouse eggs. Phorbol ester (TPA, 2.5 ng/ml) treatment resulted in an atypical pattern of CG release in which there was a greater net loss of CGs in the equatorial region of the egg than in the region opposite the spindle. This pattern also was in contrast to that during fertilization, in which CG release occurred randomly throughout the cortex. Fertilization experiments utilized two different PKC inhibitors, bisindolylmaleimide (5 microM) and chelerytherine (0.8 microM), targeted to both the "conserved" substrate and ATP binding domains of PKC. Simultaneous use of both inhibitors at maximal concentrations (compatible with fertilization and above their IC50S) resulted in no detectable inhibition of CG release in treated fertilized eggs compared to controls. In addition no inhibition of anaphase onset was observed in treated fertilized eggs. Activity of the inhibitors was verified by demonstrating that they blocked the induction of CG loss by TPA. Moreover, 1 microM staurosporine, a potent but less specific antagonist of PKC, also did not block CG loss whereas the metaphase-anaphase transition was temporarily inhibited. The results indicate that TPA does not faithfully mimic CG release in fertilized eggs, that a role for PKC in CG release at fertilization remains to be established, and that other calcium-dependent effectors may be involved in CG exocytosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.