Abstract

Planar parallel robots are good candidates for microminiaturization into a microdevice. Fully-parallel planar robots have three kinematic chains (legs) connecting the moving platform to the fixed base. Functional workspace of planar fully-parallel robots is often limited because of interference among their mechanical components. Planar parallel robots with two kinematic chains connecting the moving platform to the base can be designed to reduce interference while still maintaining three-degree-of-freedom. This paper presents kinematics and singularity study of planar three-degree-of-freedom 2-RRR parallel manipulators. Forward displacement analysis of this type of robots is governed by a quadratic equation. The inverse problem is decomposed to yield up to four solutions. Singularity analysis reveals up to four singular orientations at each operation point ( x, y) of the workspace, in addition to boundary singularities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.