Abstract

Planar parallel robots are appealing due to their structural simplicity, high stiffness, and large payload capacity. One major problem is that workspace and singularity of non-redundant parallel robots are unchangeable. Hence, when the desired path crossed with singularity or exceeded the workspace’s boundary, the robot is incapable of finishing the task. Another one is closeness to singularity. If one can know the distance between the end manipulator and singularity or workspace’s boundary, the robot will avoid lose control or breakdown. Compared with the traditional planar parallel robot, the planar parallel robot with kinematic redundancy possesses the advantages of avoiding singularity, expanding workspace by adjusting kinematic redundancy parameter. Therefore, the objective of this article is to present an offline action-strategy of a planar robot with kinematic redundancy to measure the closeness to singularity and avoid singularity. It includes two main parts: First, before the robot moves along the desired paths, the closeness to singularity was measured based on the performance of the kinematics and dynamics so that one can know where to pause the robot. Second, an algorithm is designed to previously find the proper kinematic redundancy parameters for changing singularity and workspace. Hence, the robot can smoothly move far from the singularity to finish all paths. The results indicate that the robot can adjust its configuration to well realize the goal by the offline action-strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.