Abstract

Herein, we have studied the photophysical properties for three newly synthesized coumarin derivatives; 4-((2,6-dibromo-4-methylphenoxy)methyl)-2H-benzo[h]chromen-2-one (DMB), 4-((3,4-dihydro-6,7-dimethoxyisoquinolin-1-yl)methyl)-6-methyl-2H-chromen-2-one (DIM) and 4-((p-tolyloxy)methyl)-6-methoxy-2H-chromen-2-one (TMC). The absorption and emission spectra for above said molecules were recorded in different solvents at room temperature in order to calculate their ground and excited state dipole moments. The ground (μ g ) and excited state dipole (μ e ) moments of these coumarin derivatives were calculated using Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations by the solvatochromic shift method, which involves a variation of Stokes shift with the solvent dielectric constant and refractive index. Ground state dipole moments (μ g ) were also calculated from the Guggenheim method using the dielectric constant and refractive index of the solute molecule. The value of ground state dipole moment obtained from these two methods is well correlated. Further, it is notified that the excited state dipole moment is larger than the ground state dipole moment for all three solute molecules. It inferred that the excited state for above said molecules is more polar than the ground state. The present investigations may shine in the design of nonlinear optical materials. Graphical Abstract The photophysical properties for novel coumarin derivatives were studied in different solvents.Ground and excited state dipole moments were estimated by the solvatochromic shift method. The excited state dipole moment is greater than the ground state dipole moment in systems studied. The excited state is more polar than the ground state. The present investigation may be shine in the design of non linear optical materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call