Abstract
The aim of this work is systematic study of the thermal annealing effect on the preparation of nanostructured composites NdFeO3/Fe2O3 with a spinel type structure. The interest in these nanocomposites is due to the enormous potential of their application as a basis for magnetic devices, catalysts, and magnetic carriers for targeted drug delivery. As a synthesis method, twostage synthesis was used, which includes mechanochemical grinding of nanopowders Fe2O3 and Nd2O3 in a planetary mill, followed by thermal annealing of the resulting mixture in a wide temperature range: 6001000°C. During the studies carried out, it was found that in the initial state the obtained nanocomposites are a mixture of a solid solution of interstitial and substitutional Fe2O3 and Nd2O3. At an annealing temperature of 600°C, the onset of the formation of the NdFeO3 phase is observed, which at a temperature of 1000°C is fully formed and dominates in the composite structure (content more than 85%). It was also found that during thermal sintering, the processes of phase transformations of the Fe2O3Nd2O3→NdFeO3/Fe2O3 type are accompanied by an increase in the particle size by a factor of 1.52
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.