Abstract

A theoretical method for calculating the thermodynamic properties and phase equilibria of liquid-liquid mixtures using the integral equation theory is proposed. The solvation chemical potentials of the two components are evaluated by the integral equation theory and the isothermal-isobaric variation of the total density with composition is determined to satisfy the Gibbs-Duhem relation. Given the density of a pure component, the method can calculate the densities of the mixture at any composition. Furthermore, it can treat the phase equilibrium without thermodynamic inconsistency with respect to the Gibbs-Duhem relation. This method was combined with the reference interaction-site model integral equation theory and applied to mixtures of water + 1-alcohol by changing the alcohol from methanol to 1-butanol. The destabilization of the mixing Gibbs energy by increasing the hydrophobicity of the alcohol and demixing of the water-butanol mixture were reproduced. However, quantitative agreement with experiments is not satisfactory, and further improvements of the integral equation theory and the molecular models are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.