Abstract
In seismic data processing, denoising is one of the important steps to get the earth subsurface layers' information accurately. The dictionary learning (DL) method is one of the prominent methods to denoise the seismic data. In the DL method, there are various parameters involved for denoising such as patch size, dictionary size, number of training patches, choice of threshold, sparsity level, computational cost, and number of iterations for DL. In this work, we study each parameter and its effects on seismic denoising in terms of signal-to-noise ratio and mean square error between the true and denoised seismic data. We examined the performance of the DL method on synthetic and field seismic data for various choices of parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have