Abstract

Abstract In order to distribute water resources reasonably, it is advantageous to make full use of resources and produce high economic and social benefits. Taking the Dujiangyan irrigation area of China as an example, we discuss the idea of establishing and solving the optimal allocation model of water resources. With this aim, a two-dimensional constraint model with highest economic value, minimum water shortage, minimum underground water consumption and necessary living water demand was established. In order to solve this model, we improved a multi-population genetic algorithm, extending the genetic optimization of the algorithm into two dimensions, taking population as the vertical dimension and the individual as the horizontal dimension, and transforming the cross genetic operator to copy the genetic (crossover) operator and the mutation operator to only act on the vertical dimension, so as to optimize the allocation of such discrete objectives of water resources in the irrigation area with a particular model suitable for the region. The distribution results successfully control the water shortage rate of each area at a low level, which saves the exploitation of groundwater to the maximum extent and produces high economic benefits. The improved algorithm proposed in this paper has a kind of strong optimization ability and provides a new solution for the optimization problem with multiple constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.