Abstract
• An easier method based on harmonic balance with an iterative technique is proposed. • Influence of higher order harmonics on non-linear dynamic response is highlighted. • Effects of cracks on nonlinear dynamic response of C C and C F beams are obtained. • Effects of material indices on nonlinear forced vibration response are obtained. The nonlinear modeling and subsequent dynamic analysis of cracked Timoshenko beams with functionally graded material (FGM) properties is investigated for the first time using harmonic balance method followed by an iterative technique. Crack is assumed to be open throughout. During modeling, nonlinear strain–displacement relation is considered. Rotational spring model is adopted in order to model the open cracks. Energy formulations are established using Timoshenko beam theory. Nonlinear governing differential equations of motion are derived using Lagrange's equation. In order to incorporate the influence of higher order harmonics, harmonic balance method is employed. This reduces the governing differential equations into nonlinear set of algebraic equations. These equations are solved using two different iterative techniques. Methodology is computationally easier and efficient as well. This is observed that although assumption of simple harmonic motion (SHM) simplifies the problem, it yields to erroneous results at higher amplitude of motion. However, accuracy of the solution is improved considerably when the contribution of higher order harmonic terms are considered in the analysis. Results are compared with the available results, which confirm the validity of the methodology. Subsequent to that a parametric study on influence of forcing term, material indices and crack parameters on large amplitude vibration of Timoshenko beams is performed for two different boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.