Abstract

Abstract An interesting phenomenon is observed while conducting numerical simulation of non-linear dynamic response of FGM (functionally graded material) beam having large amplitude motion under harmonic excitation. Instead of providing a frequency sweep (forward or backward), if amplitude is incremented and response frequency is searched for a particular amplitude of vibration, solution domain can be enhanced and stable as well as unstable solution can be obtained. In the present work, first non-linear differential equations of motion for large amplitude vibration of a beam, which are obtained using Timoshenko beam theory, are converted into a set of non-linear algebraic equations using harmonic balance method. Subsequently an amplitude incremental iterative technique is imposed in order to obtain steady-state solution in frequency amplitude plane. It is observed that the method not only shows very good agreement with the available research but the domain of applicability of the method is enhanced up to a considerable extent as the stable and unstable solution can be captured. Subsequently forced vibration response of FGM beams are analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.