Abstract

Efficiency of fuel cell is dependent on reactant distribution, products evacuation, pressure losses and many of these factors is dependent on the design of flow field plate. With an effective design, reactant distribution, pressure drop, and water and heat management can be further improved. In this work, two new designs, as multi-serpentine set-up with additional slots and hybrid geometry, on stainless steel bipolar plates, are presented. Electrical performance, and pressure head losses are analyzed by electrochemical methods such as polarization curve and use of electrochemical noise as a diagnostic tool to further understand the impact of water management on performance. On the one hand, multi-serpentine design shows the best electrical performance with an increase of 0.2 V (66%) at 0.9 A/cm2 in comparison of traditional serpentine design. On the other hand, hybrid design reveals the lowest pressure head losses, with a decrease of 2 mbar (about 50%) in comparison of traditional serpentine design, and a higher stability with time that can be useful to downsize compressor and provide lower impact on fuel cell stack durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call