Abstract

Microimpurities and charge states of homogeneous deuterated hydrocarbon films redeposited from a T-10 tokamak deuterium plasma discharge are studied spectroscopically using x-ray fluorescence (XRF) analysis, electron paramagnetic resonance (EPR), infrared (IR) spectroscopy; current-voltage (I-V) charachteristics are also measured. Twelve microimpurities (mainly, those of transition metals Fe, Mo, Cr, Ni, Ti, etc., with relative concentrations of 50–7000 ppm) have been discovered. The resulting broad EPR (9.9 GHz, 6000 G) line with g-factors of g = 2.053–2.093 and g = 4.3 assigned to paramagnetic impurities confirms their presence. The presence of different charge states on two sides of the film (one facing the plasma and another facing the vacuum-chamber wall) and the difference in the IR spectra of these states are established. This can be explained by the process of film formation under the influence of the tokamak plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.