Abstract

A series of SiGeSn alloy samples with various Si and Sn compositions and thicknesses were grown on Ge-buffered Si substrates. The growth was conducted by using low-cost commercially available silane and germane precursors in a standard industrial reduced pressure chemical vapor deposition reactor. Si and Sn compositional- and film thickness-dependent material and optical properties have been characterized using X-ray diffraction (XRD), Raman, photoluminescence (PL), and ellipsometry spectroscopies. Moreover, thermal stability in harsh growth environment, such as in subsequent III-V growth, was studied for future multi-junction solar cell applications. In situ rapid thermal annealing at 650°C was conducted to investigate the enhanced material quality and direct bandgap emission, which were confirmed by XRD, transmission electron microscopy, Raman, and PL measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.