Abstract
The demand for the power grid system’s capacity to undergo peak-shaving is increasing as the proportion of renewable energy rises. In China, nuclear power units usually only provide a base load operation in the view of safety and economic considerations, but they do not provide load adjustment services, which undoubtedly increases the pressure of grid load adjustment. In this paper, a novel flexibility load adjustment strategy of the CHP nuclear unit is studied, which is achieved by introducing the thermal storage tank (TST) into the Rankine cycle without changing the output of the nuclear reactor. The AP1000 pressurized water reactor nuclear power unit for combined heat and power is taken as an example, and the thermodynamic model is established through the water vapor equation. Furthermore, the reference system is simulated for the goal of minimizing the imbalance between power supply and demand, and the flexibility–environment–economy benefits are evaluated. The results show that the heat storage/release of the TST may achieve power output flexible adjustment of the nuclear unit, and the power imbalance of the reference energy system is reduced from 1107.99 MWh to 457.24 MWh, a reduction of 58.73%. The introduction of a 600 MWh TST can enable the reference unit to contribute 335 MWh of peak electricity within the reference day. From the perspective of replacing the power generation output increment of coal-fired power units with equal amounts, it can achieve a reduction of 106.09 tons of coal consumption in the case day, which means that 277.73 tons of CO2 emissions can be reduced. The profit of the reference unit can be improved by CHY 70,125 via participating in load adjustment in the case day if following the time-of-use electricity price.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.