Abstract

Directed self-assembly (DSA) of block co-polymers (BCPs) has attracted intensive attention in both academia and industry in recent years. As a versatile and complimentary patterning technique for advanced technology nodes, DSA could be used to pattern line/space and contact holes for electronic devices at the 7-nm technology node and beyond. In this paper, we systematically investigated the key parameters affecting the formation of defect-free DSA line/space patterns with the graphoepitaxy approach, which included the role of surface affinity of the pre-pattern, the critical dimension commensurability between the pre-pattern and the intrinsic pitch of lamellar BCP, the thickness effect of BCP and, more importantly, the pattern transfer from BCP to the underlying Si substrate. After process optimization, the 35-nm pitch (line width ∼16 nm) line/space patterns were successfully transferred to a Si substrate from the 200-nm pitch (space width ∼90 nm) pre-patterns established by conventional ArF lithography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.