Abstract

We have performed a study of excitation power-dependent spectra of GaN/AlGaN single quantum wells (QWs). First, the experimental “blueshift” of the emission energy, due to screening of internal piezoelectric fields, was compared with the model calculations based on self-consistent solution of Schroedinger and Poisson equations. We found that, even for the highest applied levels of excitation power (2.5 MW/cm2), only 0.5×1012 cm−2 carriers were present in the QW layers. Second, we analyzed the evolution of power-dependent spectra of two single QW having different widths. For the thinner QW (2.1 nm), the peak corresponding to a QW photoluminescence (PL) emission dominates the entire spectrum in the whole range of the used excitation power. In the case of the wider QW (4.4 nm), for sufficiently high excitation power, we observe the effect of PL quenching. Using the rate equation model we show that the observed effect of the PL quenching can be associated with the reduction of exciton binding energy due to the many body interactions in the QW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.