Abstract
AbstractNanocelluloses produced from wood pulp are widely studied for various economic applications. Most studies of cellulose nanofibrils (CNF) use lignin-free fibres obtained from bleached pulps; however, unbleached fibres with residual lignin may also be used to obtain lignocelluloses nanofibrils (LCNF). Research on lignocellulose nanofibrils is a recent subject in the field; thus, the aim of the present study was to determine the ultrastructure of lignocellulose nanofibrils compared to cellulose nanofibrils produced from the same raw material. Understanding of nanoparticle properties is of great relevance for their various applications; therefore, complete characterisation of the chemical, physical, and morphological structures of LCNF and CNF produced from pine and eucalyptus woods was performed. Unbleached cellulosic fibres are a viable alternative for LCNF production, which has properties comparable to that of traditional CNF production that uses lignin-free fibres. LCNF from pine and eucalyptus were obtained with 4.0 % and 1.8 % residual lignin, respectively. The nanofibrils had high thermal stability because LCNF had a higher maximum degradation temperature. Due to the low interaction of lignin with water, LCNF had a lower water retention value than CNF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.