Abstract

Lignocellulose nanofibrils (LCNF) were produced from thermo-mechanical pulp (TMP) using a micro-grinder and were characterized with respect to fiber diameter and thermal stability. The initial water content in the TMP affected the defibrillation process and longer grinding time was necessary for the air-dried TMP, resulting in LCNF with higher fibril diameter. As compared to the reference cellulose nanofibrils (CNF) produced through a refining process, LCNF was less thermally stable and started to degrade at a temperature that was 30 °C lower than that of CNF. LCNF obtained from the never-dried TMP was combined with various additives (10 wt%) to produce composite films. The neat LCNF and composite films did not reach the mechanical properties of the neat CNF film that was evaluated as reference. However, the addition of poly(vinyl alcohol) (PVA) at 10 wt% on a dry basis did cause a 46 and 25% increase in tensile strength and elastic modulus, respectively. Other additives including cellulose nanocrystals, bentonite and CNF were also found to increase to some extent the Young’s modulus and ductility of the LCNF composite films whereas the addition of talc did not improve the film performance. Water absorption of neat LCNF films was lower than the reference CNF and was negatively affected by the addition of PVA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call