Abstract
The equation of Klein-Gordon for Woods-Saxon potential was discussed in the minimal length effect. We have found the completion of this equation using an approximation by suggesting a new wave function. The Klein-Gordon equation in minimal length formalism for the Woods-Sadon potential is reduced to the form of the Schrodinger-like equation. Then the equation was accomplished by Nikiforov-Uvarov Functional Analysis (NUFA) with Pekeris approximation. This method is applied to gain the radial eigensolutions with chosen exponential-type potential models. The method of NUFA is more compatible by eliminating vanishing the strict mathematical manipulations found in other methods. The energy calculation results showed that angular momentum, radial quantum number, minimal length parameter, and atomic mass influenced it. The higher the radial quantum number and angular momentum, the lower the energg. In contrast to the the minimal length, the energy will increase in value when the minimal length parameter is enlarged. An increase in atomic mass also causes energy to increase as the radial quantum number and angular momentum are held constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.