Abstract
Two ZnxCd1−xSe∕Znx′Cdy′Mg1−x′−y′Se multiple quantum well structures were grown by molecular beam epitaxy. The quantum well layer thickness of the multiple quantum well region was varied in order to tune the intersubband transition energy. The high crystalline quality of the material was demonstrated by high resolution x-ray diffraction. Contactless electroreflectance (CER) spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to characterize the intersubband transitions. Excellent agreement between the estimated value obtained by CER and the value measured by FTIR was achieved. Intersubband absorption at 6.89 and 5.37μm was observed demonstrating the ability to tune the properties of these wide band gap II-VI materials for mid-IR intersubband device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.