Abstract
Contactless electroreflectance (CER) and Fourier transform infrared (FTIR) spectroscopy were used to study the intersubband transitions of a ZnxCd1−xSe/Znx′Cdy′Mg1−x′−y′Se multiple quantum well (MQW) structure grown by molecular beam epitaxy for mid-infrared device applications. The CER spectrum revealed a wide range of possible optical transitions in the MQW structure. The ground state transition was assigned by comparison with the photoluminescence emission signal taken from the same structure. A comprehensive analysis of the CER spectrum led to the identification of various interband transitions. The intersubband transitions were estimated and confirmed by FTIR measurements. The results demonstrate the potential of using CER as a complementary technique for the contactless and nondestructive characterization of the wide band gap II–VI MQW structures for mid-IR intersubband device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.