Abstract

The wireless communication system is used to provide dispatching, control, communication and other services for rail transit operations. In practice, interference from other wireless communication systems will affect the normal operation of trains, so it is an urgent problem to study the interference detection algorithms for rail transit applications. In this paper, the fourth-order cyclic cumulant (FOCC) of signals with different modulation modes is analyzed for the narrow-band wireless communications system of rail transit. Based on the analysis results, an adjacent-frequency interference detection algorithm is proposed according to the FOCC of the received signal within the predetermined cyclic frequency range. To detect interference with the same carrier frequency, a same-frequency interference detection algorithm using the relationship between the FOCC and the received power is proposed. The performance of the proposed detection algorithms in terms of correct rate and computational complexity is analyzed and compared with the traditional second-order statistical methods. Simulation results show that when an interference signal coexists with the expected signal, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the signal-to-noise ratio (SNR) is higher than 2 dB and -4 dB, respectively. Under the practical rail transit wireless channel with multipath propagation and the Doppler effect, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the SNR is higher than 3 dB and 7 dB, respectively. Compared with the existing second-order statistical methods, the proposed method can detect both the adjacent-frequency and the same-frequency interference when the interference signals coexist with the expected signal. Although the computational complexity of the proposed method is increased, it is acceptable in the application of rail transit wireless communication interference detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.