Abstract

This paper is devoted to the study of the mesothermal temperature maximum layer (MTML) in Lake Baikal, which is observed during the period of winter stratification. On the one hand, this is a rather well-known phenomenon; on the other hand, it is not sufficiently studied, although it has a significant impact on the thermal regime in winter and water dynamics during the periods of formation and breakdown of inverse temperature stratification. Our work presents the results of analyzing the spatial and temporal variability of the main MTML parameters and their dependence on hydrometeorological factors. For this purpose, CTD soundings and mooring data obtained in the western part of the southern basin of Lake Baikal in 2000–2022 were analyzed in comparison to ERA5-Land reanalysis. The MTML parameters have noticeable within-season and interannual spatial and temporal variability. This is obviously related to the influence of the processes of vertical turbulent mixing, internal wave action, and current patterns. The analysis of interannual differences revealed four types of behavior of the maximum MTML temperature during the ice season. The influence of wind conditions on the main MTML parameters (maximum MTML temperature, depth of its occurrence, and depth of the upper MTML boundary) was shown not only in the fall, but also in the summer period, when heat accumulation in the Baikal water column takes place. With the increased wind activity in the late fall, the MTML is formed deeper and has lower maximum temperature values. At lower wind activity in the fall, the MTML is closer to the surface and the values of the maximum MTML temperature are higher. A change in wind activity in the summer leads to the opposite effect. In spite of the essential trends over the study period in the dates of the occurrence of hydrological events, no noticeable trends were registered for the maximum MTML temperature, its depth, and the depth of the upper boundary of the MTML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call