Abstract
Glyphosate (N-(phosphonomethyl) glycine) is one of the most widely used herbicides in the world. Experiments using distilled water or CaCl2 extractor resulted in as much as 60% of glyphosate being desorbed from goethite. When Mehlich 1 extractor was used, desorption could reach up to 73%. At pHs 2.0, 4.0, 6.0, and 8.0, an increase in salt content decreased the adsorption of glyphosate onto goethite. This indicates that most of the glyphosate is bound weakly to goethite through an outer-sphere complex. Thus, in soils with a high goethite content, glyphosate will contaminate groundwaters or rivers easily. FT-IR spectra showed that glyphosate interacts with goethite through the phosphate group and, at high pH, the amine group could be involved. Evidences of the interaction of the amine group of glyphosate with goethite were also obtained from the EPR spectra that showed, at high pH, a distortion in the octahedral symmetry of iron. In addition to the adsorption decrease with an increase in pH, a decrease of desorption at high pH occurs. This probably occurs because, at high pH, glyphosate interacts with goethite as a monodentate complex and through the amine group. The adsorption results fit best to a Freundlich isotherm model. This is in good agreement with the desorption results, indicating the presence of at least two adsorption sites—one for outer-sphere complexes and the other of inner-sphere complexes. The experimental results fit well with both pseudo-second-order and diffusion-limited models. The experimental results also fit well with a diffusion-limited model; however, the C value was different from zero. Therefore, the adsorption process was not controlled by diffusion only. Adsorption of glyphosate onto goethite is a complex process that could involve intra-particle diffusion. After adsorption of glyphosate onto goethite, a large decrease of pHpzc was observed. The surface area and pore volume of goethite did not change with the adsorption of glyphosate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.