Abstract

Sandy soils were sampled from second rotation sites of Pinus pinaster Ait. on the Gnangara Mound in Western Australia. Adsorption isotherms were measured for atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine], simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], and glyphosate [N-phosphonomethyl-aminoaceticacid]. Adsorption isotherms were also measured for degradation products of atrazine: hydroxyatrazine [6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] (HA), desethylatrazine [6-chloro-N-isopropyl-1,3,5-triazine-2,4-diamine] (DEA); and of glyphosate: aminomethylphosphonic acid (AMPA). The adsorption of the 2 triazines was proportional to soil organic carbon content and was not affected significantly by other soil parameters. The affinity for soil organic carbon was in the order atrazine = simazine = DEA > HA. Affinity of atrazine for the type of organic matter in the Gnangara Mound soils (expressed as Koc) was significantly greater than is commonly reported for other soils. The adsorption of glyphosate and AMPA increased strongly with iron and aluminium content of soils and decreased with increasing soil organic carbon content. This would indicate that glyphosate and AMPA are mainly adsorbed by clay minerals, while soil organic matter competes for adsorption sites and inhibits adsorption. Contrary to what is usually reported for batch adsorption of pesticides in soils, significant increases in adsorption of the triazines and glyphosate were measured after 1 day of equilibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call