Abstract

Glyphosate [N-(phosphonomethyl)-glycine] is a herbicide widely used in large quantities in agricultural applications. It is also known to form complexes with metal ions, although its influence on metal behavior, such as lead (Pb) in soil, is not well understood. In this study, the adsorption and co-adsorption of Pb and glyphosate were determined on two soils [a red (RS) soil, Udic Ferrisol, and a yellow-brown (YB) soil, Udic Luvisol] of distinctly different chemical characteristics at varying pH conditions. Results indicate that the adsorption of lead and glyphosate strongly depends on soil types: the RS soil, characterized by a relatively high iron/aluminum content but a low pH and organic matter content, shows a much lower adsorption capacity for Pb but a higher sorption for glyphosate than the YB soil. The co-existence of Pb and glyphosate in soils resulted in complex interactions among Pb, glyphosate, Pb-glyphosate complexes, and soil minerals. The presence of glyphosate decreased Pb adsorption on the two soils, which was attributed primarily to the formation of soluble Pb-glyphosate complexes having relatively low affinities to soil surfaces. On the other hand, addition of Pb increased the adsorption of glyphosate on both soils, which was attributed to: (1) a decreased solution pH due to the ion exchange between Pb2+ and H+ on soil surfaces; and (2) increased sorption sites where Pb was adsorbed and acted as a bridge between glyphosate and the soil. The present study illustrates that the complex interactions among glyphosate, Pb, and soil may have important implications for the mobility and bioavailability of Pb in soil and should thus be considered in future environmental risk assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call