Abstract

Surface waters are used for disposal of treated effluents from wastewater treatment plants. These effluents usually contain only small amounts of various contaminants but these harmful components accumulate over time in the river, especially in sediments. An integrated approach for the evaluation of the impact of treated effluents was used to predict an ecological risk assessment to the Krka river beside Novo Mesto. The effluents from pharmaceutical and municipal wastewater treatment plants were discharged too closely into the receiving stream, so that separate impacts could not be distinguished. Biologically treated industrial effluents contained great amounts of barely biodegradable organic pollution, organic nitrogen, ammonia and phosphorus, and sometimes zinc. The toxicity of effluents was mostly dependent on their chemical composition. The municipal discharge contained greater amounts of organic pollution that was completely biodegraded but still had a great nutrient pollution load. The effluents were nontoxic. The harmful substances from the effluents were traced in the river. In the downstream site slightly higher concentration of organic pollutants, organic nitrogen, phosphorus, and zinc were detected due to discharges. The river water was over-saturated with oxygen, especially in the summer. In toxicity tests, samples of the river water were nontoxic. Sediments at the downstream site accumulated from discharged organic nitrogen, phosphorus, or zinc. The results of our study show that the main problem is eutrophication of the river Krka, so it is obvious we must reduce the quantity of nutrients in the effluents from wastewater treatment plants. In both effluents it will be necessary to reduce the polluting load of phosphorus, the limiting element for growth of algae and macrophytes in the receiving stream. In the industrial effluent it will be necessary to reduce substances which cause toxicity, such as zinc and nonbiodegradable organic compounds that may be accumulatec the water ecosystem over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call