Abstract

The hydrogen evolution reaction (HER) on Ni–P alloys was investigated experimentally and theoretically. First Ni–P alloys with P content in the range from 5.8 to 10.0 wt% were prepared by electrodeposition. The best catalysis to the HER was found on the Ni–P alloys with P content of 6.0 wt% (10.8 at%). In order to understand the function of P element in Ni–P amorphous alloys for the HER, the density-functional theory (DFT) method and front molecular orbital (FMO) theory were used to analyze the function of P element in Ni–P amorphous alloys for the HER. The research shows: it is easier for water molecule to get the first electron and form Ni n +1–H and Ni n P–H on Ni n +1 clusters than on Ni n P clusters, but it is more difficult for water molecule to get the second electron from Ni n +1–H than Ni n P–H. The strength of Ni n +1–H bond is always greater than that of Ni n P–H. It means it is more difficult for hydrogen evolutes from Ni n +1 clusters than Ni n P clusters. Regardless of which step among all steps of the HER is the rate-control step, the Ni–P alloys with P contents being in a range of 9.1–14.3 at% would be always good to the whole HER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.