Abstract

Supercapacitors will play a crucial role in the future energy landscape due to their high power density and extended cycle stability. However, energy density tends to be relatively low, partly because of conventional heavy current collectors, also posing sustainability issues. It is crucial to integrate lightweight, flexible current collectors and environmentally friendly active materials while maintaining the performance of the supercapacitor. Here we report on a metal-free supercapacitor using a carbon paper current collector and onion like carbon (OLC). The electrodes were fabricated through a scalable and flexible spray-coating process using onion-like carbon ink. Higher capacitances were observed for the paper-based electrode (24.1 F/g, 34.9 mF/cm2) compared to 22.5 F/g (31.5 mF/cm2) for aluminium collectors at scanrates of 2.5 mV/s over a voltage window of 2.5 V. At elevated scanrates of 100 mV/s–5 V/s, the actual operating window of a supercapacitor, the paper-based electrode offers a significantly enhanced performance. Stability tests demonstrated a capacitive retention of 98 % for both electrodes after 10,000 cycles. The utilization of onion-like carbon as the active material and a paper-based current collector enables the development of a fully carbon-based supercapacitor system, without compromising its electrochemical performance. This approach introduces a metal-free OLC supercapacitor and promotes environmental sustainability by reducing the dependence on conventional metal-based components and provides a more resource-efficient solution to address the energy storage needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.