Abstract

A trace gases detection system based on integrated cavity output spectroscopy (ICOS) was developed, where a NIR tunable diode laser (TDL) was used as light source, an optical cavity composed by two plan-concave mirrors with reflection near 99.7% was used as the absorption cell. Trace water vapour (H2O), carbon dioxide (CO2), methane (CH4), carbon monoxide (CO) and mixture of CO2 and CO were tested by ICOS based on the characteristics absorption. The wavelength calibration, cavity transmission characteristics, quantitative measurement ability and sensitivity of the TDL-ICOS were also studied, and a evaluated minimum detectable sensitivity of 1.15 × 10−7 cm−1 was obtained when the system was used to CH4 detection. The experiment results show that TDL-ICOS is expected to be a reliable and promising system for the detection of trace gases since it has some advantages such as real-time monitoring, simple device, easy operation, high sensitivity, good stability and quantitative ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call