Abstract

We report what we believe to be a novel demonstration of simultaneous detection of multiple trace gases by near-IR tunable diode laser photoacoustic spectroscopy using a cell containing a cantilever microphone. Simultaneous detection of carbon monoxide (CO), ethyne (C2H2), methane (CH4) and combined carbon monoxide/carbon dioxide (CO+CO2) in nitrogen-based gas mixtures was achieved by modulation frequency division multiplexing the outputs of four near-IR tunable diode lasers. Normalized noise-equivalent absorption coefficients of 3.4×10−9, 3.6×10−9 and 1.4×10−9 cm−1 W Hz−1/2 were obtained for the simultaneous detection of CO, C2H2 and CH4 at atmospheric pressure. These corresponded to noise-equivalent detection limits of 249.6 ppmv (CO), 1.5 ppmv (C2H2) and 293.7 ppmv (CH4) respectively over a measurement period of 2.6 s at the relevant laser power. The performance of the system was not influenced by the number of lasers deployed, the main source of noise arising from ambient acoustic effects. The results confirm that small-volume photoacoustic cells can be used with low optical power tunable diode lasers for rapid simultaneous detection of trace gases with high sensitivity and specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call