Abstract

Boolean satisfiability (SAT) is an important performance-hungry problem with applications in many problem domains. However, most work on parallelizing SAT solvers has focused on coarse-grained, mostly embarrassing, parallelism. Here, we study fine-grained parallelism that can speed up existing sequential SAT solvers, which all happen to be of the so-called Conflict-Directed Clause Learning variety. We show the potential for speedups of up to 382× across a variety of problem instances. We hope that these results will stimulate future research, particularly with respect to a computer architecture open problem we present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call