Abstract

AbstractIn this present study, the effect of silane treated ramie fiber addition along with organically‐modified montmorillonite (OMMT) nano clay in epoxy resin composite was investigated in drop load impact, shear loading, and high‐speed drilling. The main aim of this research study was to develop a high‐laminar shear strength epoxy structural composite for various engineering applications. To improve the laminar adhesion the fiber was treated using silane via acid hydrolysis technique. The OMMT nanoclay also added with fiber in order to improve the load bearing effect and adhesion phenomenon. The composites were prepared using hand layup method with postcuring. The adhesion behavior of composites was tested based on American society for testing and materials standards and compared. According to the results, the treated ramie fiber possesses high resistance to impact loading. The ballistic resistance of composite is increased three fold when compare with as‐received fiber‐epoxy composites. The interlaminar shear strength of composite designation C1.5 gives highest shear strength of 35 MPa. The drilling study revealed highest dimensional stability for treated fiber. No fiber chip off and pull out at the drilled hole surface. The fractography analysis confirms no lamina delamination occurs even at high‐speed drilling. These delamination resistance epoxy‐based composites are suitable in automobile, structural and defense gadget manufacturing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.