Abstract

ABSTRACTLoad-controlled fatigue tests were conducted on dual-phase X80 pipeline steel to investigate the effects of stress ratio (R-ratio) on the fatigue crack growth behaviour. Dual-phase X80 pipeline steel showed a non-linear relationship between fatigue crack growth rate (da/dN) and the stress intensity factor range (ΔK) at each R-ratio. Fatigue crack propagation curves of X80 pipeline steel were evaluated using the conventional Paris equation and a new exponential equation named αβ model. In addition, the electron back-scattered diffraction technique was used to study the effects of stress ratio on the fatigue crack growth behaviour. The results indicated that the corresponding ΔK of the transition point decreased with the increase of R-ratio. That was attributed to the variation of the crack path and the fracture mode because of the changes in the size of monotonic plastic zone and cyclic plastic zone at crack tip. Compared to the overall fitting, piecewise fitting by Paris equation and αβ model, piecewise fitting was the most accurate method, and αβ model is more convenient and efficient than the conventional Paris-based equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.