Abstract

A quasi-static uniaxial compression experiment was designed to simulate creep damage in coal. During the experiment, electromagnetic radiation (EMR) and acoustic emission (AE) signals were synchronously acquired. The energy of EMR and AE signals were subsequently calculated after the background noise from the equipment and the environment were filtered out. We then analyzed the change in signal energy associated with the sample strength, loading time and other factors. The results showed that as the loading time increases, the frequency of the periodic signal in the EMR energy also increases. In addition, the dominant AE signal energy release occurs only in the final stage of sample failure. However, intermittent AE pulse clusters were recorded during the entire loading cycle. The analysis of data provided a strong correlation between the change in the AE signal energy and the expansion of micro-cracks in the materials, which is manifested as an irreversible deformation of the material at the macroscopic scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.