Abstract

A multisignal nanosecond synchronous acquisition system to measure acoustic emission (AE) and electromagnetic radiation (EMR) generated during the process of loading and failure of coal and rock samples is established. The correlation between the energy of the AE and EMR signals and the loading stress of outburst coal-rock samples was studied, and the characteristics of the AE and EMR signals during the process of loading and fracturing the outburst coal and rock samples were analyzed. The results show that (1) before the failure of the outburst coal and rock samples, the fluctuation of the AE and EMR signals is the largest, with the same rising and falling trend, and the intensity is not strictly positively correlated, with the phenomenon of low EMR when the AE intensity is high; (2) the EMR and AE deviation degree and frequency exhibit a good response to coal and rock fracturing. The correlation between EMR and stress drop is stronger than that of AE, and the AE signal is richer than the EMR signal. The results show that it is feasible to develop combined AE and EMR early warning technology to improve the early forecasting accuracy of coal and gas outbursts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.