Abstract

The density functional calculations were performed using the full-potential linearized augmented plane wave (FPLAPW) method for new Heusler alloys CsTmO2 (Tm = Fe, Co, Ni, and Cu). All compounds were stable in FM AlCu2Mn-type structure. Results revealed that these alloys can be experimentally synthesized according to the calculated cohesive and formation energies. CsTmO2 (Tm = Fe, Co, Ni, and Cu) alloys in AlCu2Mn-type and CuHg2Ti-type structures were half-metallic ferromagnets. The origin of half-metallicity in CsNiO2 alloy was also discussed. The total magnetic moment of CsTmO2 (Tm = Fe, Co, Ni, and Cu) alloys in both structures were 3 μB per formula unit and obeyed the Slater-Pauling rule (Mtot = 22 − Ztot). The relationship between the magnetism and half-metallicity of all compounds and the lattice constants was also studied. The half-metallic character in combined alloys CsTmO2 (Tm = Fe, Co, Ni, and Cu) improved in comparison with Heusler alloys including transition metals which indicated that they may be good candidates for practical applications in spintronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.