Abstract

Electrodeposition approach was used to grow the ZnSe nanostructure on indium doped tin oxide (ITO) layered glass substrate. Due to low cost and high degree of absorption, binary semiconductors made from chalcogens such as CdSe, ZnO, ZnS and ZnSe provide significant features in photovoltaic and photoelectrochemical cells. The structural and morphological properties of deposited nanostructures were examined by XRD and SEM. X-ray diffraction analysis informed about cubic structure with a preferred orientation and the calculated crystal size was approximately 75 nm. The optical properties were examined by UV–visible absorbance spectra and optical band gap was measured using Tauc plot. The deposited ZnSe nanostructure has direct band gap ∼2.52 eV at room temperature which was less than 2.82 eV which is the band gap of bulk ZnSe. Investigations also focused on additional qualities like excellent optical transmission, low electrical resistance, and good photosensitivity. Because of the presence of defect states in the deposited nanostructure, the band gap energy is smaller than that of bulk material. The current-voltage characteristics were measured in dark mode and under illumination of normal tungsten filament light and LED. There was notable change in the current for both normal light and LED in comparison to dark mode. The findings of all the characterization methodologies suggested that for the production of solar cells low cost ZnSe may be used as an alternative environment friendly Cd-free window layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.