Abstract

In recent years, the treatment of synthetic dyes has become an environmental concern. In this study, a single step calcination process was used to develop the inventive, simple, and inexpensive adsorbent CC-GO/CC-K2CO3 composite. The composite was employed for the treatment of methylene blue (MB), a cationic dye. Several characterization methods including powder XRD, FTIR, XPS, BET, FESEM, EDX, Raman, and HRTEM techniques were utilized for the analysis of the composite. The surface area and mean pore diameter of CC-GO/CC-K2CO3 were 32.651 m2 g−1 and 3.71 nm, respectively. The adsorption experiment showed that optimal parameters for the removal of MB dye are at an adsorbent dose of 60 mg, initial dye concentration of 80 mg/L, contact time of 150 min, and pH value of 12 at room temperature. Under optimized conditions, CC-GO evidences a removal efficiency of 70.34 ± 1.36 % while after incorporation with CC-K2CO3 the removal capacity sharply increases up to 98.10 ± 0.4 %. Kinetic and isotherm models were used to analyze the removal rate constant and equilibrium adsorption capacity under various adsorption environments. The adsorption study was found to follow the models of pseudo-second order kinetic and Freundlich isotherm. The CC-GO/CC-K2CO3 composite has the maximum adsorption capacity (MAC) of 160.77 mg/g established by the Langmuir isotherm. The prepared composite has demonstrated the capacity to be recycled up to three times with a gradual decrease in its adsorption behavior, exhibiting removal efficiency of 61.66 ± 2.04 %.A cost estimation study of the composite was also performed to assess its cost effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.