Abstract

In this work, two common failure modes of nano-electro-mechanical (NEM) relays: (1) electrical breakdown and (2) stiction due to secondary pull-in were analyzed. These effects are dominant when dimensions of the device are scaled to the sub-micrometer scale. Like MEMS devices, design adjustments, such as introduction of dimples, cannot provide a solution. The geometrical parameters and working environment drive directly the occurrence of these failure modes. The beam length is the key parameter in driving the electrical breakdown while the distance of the gate to the drain, the beam thickness, and the actuation gap set the limits for secondary pull-in voltage. The analysis shows that these failure modes could be mitigated and a physical parameters design space could be identified to achieve NEM devices for high speed operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call