Abstract

The influence of the volume fraction and size of soft soil inclusions on the mechanical behavior of soilcretes was experimentally and numerically investigated. Spherical kaolinite chunks with a specific water content and volume were added to the soilcrete samples during the filling phase of the molds. Different mechanical properties such as the effective static elastic modulus (E) and the unconfined compressive strength (UCS) of soilcrete specimens with different volume fraction of inclusions were determined. E and UCS of soilcrete specimens with different volume fraction of inclusions were also determined using 2D (unit cell) and 3D (digital specimens) finite element models. UCS and E decrease considerably as the volume fraction of soft inclusions increases. Experimental results show that these UCS and E drops are, respectively, about 47% and 20% for a volume fraction of inclusions fv = 9%. A good agreement between the experimental and simulated data was observed, especially for elastic modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call