Abstract

Tooth friction is unavoidable and changes periodically in gear engagement. Friction excitation is an important excitation source of a gear transmission system. They are different than the friction coefficients of any two points on the same contact line of a helical/herringbone gear. In order to obtain the influence of the friction excitation on the dynamic response of a helical/herringbone planetary gear system, a method that uses piecewise solution and then summing them to analyze the friction force and frictional torque of tooth surfaces is proposed. Then, the friction coefficient is obtained based on the mixed elastohydrodynamic lubrication (EHL) theory. A dynamic model of a herringbone planetary gear system is established considering the friction, mesh stiffness, and meshing error excitation by the node finite element method. The influence of friction excitation on the dynamic response of the herringbone planetary gear is studied under different working conditions. The results show that friction excitation has a great influence on the vibration acceleration of the sun and planetary gear. However, the effect on the radial and tangential vibration acceleration of a planetary gear is the opposite. In addition, the friction excitation has a slight effect on the meshing force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.