Abstract

The displacement damage effect of 10 MeV proton radiation on a high-speed InGaAs PIN photodiode has been experimentally investigated to evaluate the stability of the device in a space radiation environment. The results show that the dark current and low-frequency noise of the device increase significantly after irradiation, while the capacitance of the device decreases slightly after irradiation, where the spectral response parameters are less affected by irradiation. The increase in dark current is essentially linear with the displacement damage dose. Finally, the effect of proton irradiation on the optical communication system is simulated and the results show that the bit error rate of the system increases with the increase in irradiation fluence, which seriously affects the sensitivity of the optical communication system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.