Abstract

A 512/spl times/512 CMOS active pixel sensor (APS) was designed and fabricated in a standard 0.5-/spl mu/m technology. The radiation tolerance of the sensor has been evaluated with Co-60 and proton irradiation with proton energies ranging from 11.7 to 59 MeV. The most pronounced radiation effect is the increase of the dark current. However, the total ionizing dose-induced dark current increase is orders of magnitude smaller than in standard devices. It behaves logarithmically with dose and anneals at room temperature. The dark current increase due to proton displacement damage is explained in terms of the nonionizing energy loss of the protons. The fixed pattern noise does not increase with total ionizing dose. Responsivity changes are observed after Co-60 and proton irradiation, but a definitive cause has not yet been established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.