Abstract
Stratification features in DI gasoline combustion were studied using a constant-volume combustion vessel. Indicated pressure analysis and high-speed combustion observation were carried out by changing injection-sparking interval τint, spray cone angle and swirl ratio. There exists a τint range where the mixture is ignitable and the shortest τint gives the highest maximum pressure rise rate (dP/dt)max and the highest (dP/dt)max reaches a maximum at a certain swirl ratio. The fairly large scatter found in(dP/dt)max data plotted against τint is markedly reduced by plotting them against total ignition delay τtot(=τint+τd), where τd denotes ignition delay. Maximum volumetric burning velocity (Sv)max was proposed as a measure of the stratification degree, based on the thermodynamic analysis which was carried out under the concept that a higher stratification degree increases the stoichiometric range of the mixture. It is noteworthy that as the spray cone angle is increased, (Sv)max increases and becomes less affected by SR.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have