Abstract

Abstract The conventional capillary underfill process has been a common practice in the industry, somehow the process is costly and time-consuming. Thus, no-flow underfill process is developed to increase the effective lead time production since it integrates the simultaneous reflow and cure of the solder interconnect and underfill. This paper investigates the effect of different dispense patterns of no-flow underfill process by mean of numerical and experimental method. Finite volume method (FVM) was used for the three-dimensional (3D) simulation to simulate the compression flow of the no-flow underfill. Experiments were carried out to complement the simulation validity and the results from both studies have reached a good agreement. The findings show that of all three types of dispense patterns, the combined shape dispense pattern shows better chip filling capability. The dot pattern has the highest velocity and pressure distribution with values of 0.0172 m/s and 813 Pa, respectively. The high-pressure region is concentrated at the center of the chip and decreases out toward the edge. Low in pressure and velocity flow factor somehow lead to issue associated with possibility of incomplete filling or void formation. Dot dispense pattern shows less void formation since it produces high-pressure underfill flow within the ball grid array (BGA). This paper provides reliable insight into the industry to choose the best dispense pattern of recently favorable no-flow underfill process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call