Abstract
In the literature it is proven that thermal vacancies have a great influence on the mechanism of hardening of Fe-Al alloys. Moreover, in these alloys, we observed a long-range ordering, which can significantly affect the mechanical and physical properties and their stability. In this paper, influence of low-temperature annealing on elimination of excess vacancies was investigated. TEM observation of annealed specimens for the alloys with 28 and 38 at.% aluminum have helped elucidate the phenomena responsible for vacancies elimination due to the occurrence of particular interactions between point and linear structure defects. It was shown that the aluminum content influences significantly changes in defects structure. The alloy with 28 at.% aluminum has mainly superdislocations in the structure, while in alloy with 38 at.% aluminum, mainly unit dislocations and high-energy dislocation configurations, like dislocation loops, dislocation dipoles, and dislocation jogs, were observed. The results suggest that different defect types may control the diffusion process during low-temperature annealing and that it is affected by alloy composition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.