Abstract

To compare the defect accumulation and the annealing behaviour in an fcc and a bcc metal, OFHC-Cu and pure Fe were neutron irradiated at 100°C to a fluence of 1.5 × 10 24 n/m 2, ( E > 1 MeV). Isochronal annealing was carried out and the annealing behaviour followed by positron annihilation spectroscopy (PAS) as well as electrical conductivity measurements. The results for the two specimens in the as-irradiated state are very different. In Cu the defect positron lifetime is characteristic of single vacancies, very small vacancy clusters or stacking fault tetrahedra, while in Fe the defect lifetimes confirm the presence of micro-voids and voids. The electrical conductivity, on the other hand does not discriminate between the two types of damage in the irradiated specimens. During annealing of the irradiated Fe below stage V, the average void size grows by migration and coalescence of the micro-voids and voids. At and above stage V the void density decreases and the voids finally anneal out at ∼500°C. In contrast, the annealing of irradiated Cu below stage V does not yield any evidence for the evolution of micro-voids or voids. The implications of these results are discussed. One conclusion is that neutron irradiation below stage V causes higher void swelling in bcc iron than in fcc copper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.